## An Oxyallyl (or Oxyallyl-like) Geometry Is a Key Structure in the Reaction of Ketenes and Diazoalkanes To Form Cyclopropanones

## T. S. Sorensen* and F. Sun

The Department of Chemistry, University of Calgary Calgary, Alberta T2N 1N4, Canada

## Received August 4, 1997

Cyclopropanone (1) ${ }^{1}$ was first prepared by the thermal reaction of ketene with diazomethane, and substituted derivatives have been prepared ${ }^{2}$ by the reactions of substituted ketenes and diazomethanes. Turro and Hammond ${ }^{3}$ have speculated on possible reaction mechanisms, but as noted recently by Berson, ${ }^{4}$ "the mechanism of diazomethane's addition to ketenes is not known".


In the present study, which is directed toward this deficiency, we have used an interplay of experimental and theoretical chemistry to interpret the basic stereochemical features of this reaction, i.e., using alkyl substituted ketenes and diazoalkanes as starting materials.

The following experimental results are notable (all reactions were initially carried out at $-78{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solvent and examined in situ by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, eqs $\left.1-4\right) .{ }^{5}$

Several conclusions can be drawn from these results: (1) The



cyclopropanone stereochemistry does not appreciably depend on the size of the alkyl group of the ketene (cf., eq 1 vs 2 or eq 3 vs 4). (2) Conversely, the stereochemical result is quite

[^0]

Figure 1. Expected direction of the initial attack by a diazoalkane carbon on the carbonyl carbon of a ketene. There are various possible rotamers about the forming $\mathrm{C} 3-\mathrm{C} 4$ "bond" but the orientation shown is approximately that found for $\operatorname{TS1A}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{H}\right)$ in Figure 2.


Figure 2. Calculated (B3LYP/6-31G*) free energy diagram of the reactants, intermediate 2, and transition states for the methyl ketenediazoethane reaction. TS1B also leads to an intermediate isomeric with $\mathbf{2}$, but this path is not expected to be operative and is not shown.
dependent on the size of the alkyl group of the diazoalkane (cf., eq 1 vs 4 or eq 2 vs 3). (3) The exclusive ciscyclopropanone stereochemistry in eqs 1 and 2 (particularly eq 1) is an indication that strong stereoelectronic factors are involved in the cyclopropanone formation since cis-2,3-di-tertbutylcyclopropanone has been computed to be $7.21 \mathrm{kcal} / \mathrm{mol}$ less stable than the corresponding trans isomer. ${ }^{5}$

A ketene is known to undergo nucleophilic attack at the carbon of the carbonyl (the $\pi$-type LUMO of a ketene has a large carbonyl carbon coefficient), ${ }^{7}$ but because of the allenic bonding of a ketene, the nucleophile (in our case diazoalkane) is required to approach this $\pi$-orbital in the same plane as that containing the ketene substituent groups. The $\pi$-type HOMO orbital of a diazoalkane constitutes an ambident nucleophile, with large coefficients (antiphase) on both C and terminal N . For carbon as the nucleophile in the diazoalkane, initial orbital overlap with a ketene is expected along the axis of this $\mathrm{C} p \pi$ orbital, and one can use a Newman projection (Figure 1), sighting along the newly forming bond, to visualize the overall geometry (with various rotamers possible).

Molecular orbital (MO) calculations ${ }^{8,9}$ were undertaken concurrently with the experimental work. Results for the diazoethane-methyl ketene reaction (B3LYP/6-31G* level) are illustrated in Figure 2 and can be summarized: (1) Transitionstates TS1A and TS1B (Figure 2) were located for the ratedetermining attack of diazoethane on the H or $\mathrm{CH}_{3}$ side of methyl ketene. These resemble the Figure 1 structure (ketene

[^1]

Figure 3. Approximate structure of TS2A and TS2A' transition states. As $\mathrm{N}_{2}$ "departs" in the continuing reaction, bonds $\mathrm{C} 4-\mathrm{C} 6$ and $\mathrm{C} 3-\mathrm{C} 4$ become nearly equal, $\mathrm{R}^{\prime}$ occupies a position syn to oxygen, R occupies an anti position, R, and C6 begins to twist in a disrotatory manner with respect to the twist already present at C 3 .

H and $\mathrm{CH}_{3}$ interchanged for TS1B), with a long C3-C4 bond (1.96-1.97 $\AA$ ) and a $\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 5$ dihedral angle of $c a$. $20^{\circ} .{ }^{10}$ (2) The $\mathrm{CH}_{3}$ group of diazoethane in TS1A is located in the R position, and attempts to locate another transition state where H and $\mathrm{CH}_{3}$ were interchanged led to the same result. (3) Transition-state $\mathbf{1 B}$ is $3.16 \mathrm{kcal} / \mathrm{mol}$ higher in energy than $\mathbf{1 A}$, because of steric interactions between ketene $\mathrm{CH}_{3}$ and diazoethane H. (4) The cyclic intermediate from TS1A, structure 2, ${ }^{10}$ can lose $\mathrm{N}_{2}$ via two different second transition states, labeled $\mathbf{2 A}$ and $\mathbf{2} \mathbf{A}^{\prime}$, whose structures are sketched in Figure 3. These transition states differ in energy by only $1.02 \mathrm{kcal} / \mathrm{mol}$, because C 4 is fully $\mathrm{sp}^{2}$-hybridized, moving the $\mathrm{CH}_{3}$ of the diazoethane away from the ketene H and lessening the steric differentiation. In TS2A and TS2A ${ }^{\prime}$, the C3-C4 bond is short (1.49 and 1.50 $\AA$, respectively) and $\mathrm{C} 3-\mathrm{N} 2$ is long ( 1.70 and $1.77 \AA$ ). IRC (intrinsic reaction coordinate) calculations show that TS2A leads to cis-2,3-dimethylcyclopropanone and TS2A ${ }^{\prime}$ to the trans isomer. ${ }^{11}$ As $\mathrm{N}_{2}$ leaves from TS2A, a syn,syn-dimethyloxyallyllike structure (3) results and then this undergoes disrotatory closure. ${ }^{12}$ In the TS2A' case, a syn,anti-dimethyloxyallyl-like structure (4) is involved.


2


3


4

With methyl ketene, the side selectivity of the diazoethane attack (calculated $\Delta \Delta G^{\ddagger}$ difference of $3.2 \mathrm{kcal} / \mathrm{mol}$ ) sets up a syn orientation at one center of the developing oxyallyl-like
(10) TS1A was also obtained using a solvation (acetonitrile) simulation procedure (SCI-PCM Model User's Reference, Gaussian 94, Gaussian Inc., Pittsburgh, PA, 1995, p 151 and refs 155-157). The C3-C4 bond is longer (2.08 A), but the dihedral $\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 5$ angle is smaller $\left(15.2^{\circ}\right)$ than in the gas-phase result. Optimization from solvated TS1A gives solvated 2. The $\Delta E^{\dagger}$ from 2 is reduced from $21.5 \mathrm{kcal} / \mathrm{mol}$ (gas phase) to $18.5 \mathrm{kcal} /$ mol. Since $\mathrm{CH}_{3} \mathrm{CN}$ is more polar than $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, we conclude that solvation effects do not change the nature of TS1.
(11) The IRC calculation was allowed to proceed to the van der Waals separation distance for $\mathrm{N}_{2}$ and the organic fragment, ca. $3 \AA$. Optimization of the organic fragment was then carried out from this point.
structure, and we postulate that this center will be exclusively syn for any monoalkyl ketene. The secondary transition-states $\mathbf{2 A}$ and $\mathbf{2 \mathbf { A } ^ { \prime }}$ set up the second geometric center, and we postulate that these are similar enough in energy in the diazoethane case that a mixture of both syn and anti geometries result. However, with large R groups in the diazoalkane (tert-butyl), molecular modeling studies show that TS2A ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}$ ) will be strongly preferred over TS2A' $(\mathrm{R}=t$-Bu).

One can now interpret the eqs $1-4$ results from this basic model. As stated, we assume that all diazoalkanes attack the H side of a monoalkyl ketene; thus methyl and tert-butyl ketenes give qualitatively similar results (eq 1 vs 2 and eq $3 v s 4$ ). In both cases, the ketene alkyl group will occupy a syn orientation in the developing oxyallyl structure. With a large R group on the diazoalkane (tert-butyl), TS2A will be preferred over $\mathbf{2 A}^{\prime}$, thereby also leading to a syn orientation for this group and cis stereochemistry in the cyclopropanones (eqs 1 and 2). With a small R group, both transition-states $\mathbf{2 A}$ and $\mathbf{2 \mathbf { A } ^ { \prime }}$ are involved and both cis and trans cyclopropanones are formed (eqs 3 and 4).

For the diazomethane-ketene calculations, we also find TS1 and TS2 and an intermediate related to $2 .{ }^{13}$ From TS2 to cyclopropanone, the IRC follows a potential energy surface in which the organic fragment is oxyallyl-like in structure, although the reaction is more concerted than in the dimethyl case. ${ }^{14}$ We believe that these experimental and theoretical results strongly corroborate each other and clearly implicate an oxyallyl (or oxyallyl-like) structure in the formation of cyclopropanones from diazoalkanes and ketenes.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for generous support and Dr. A. Rauk, University of Calgary, for valuable discussions.

Supporting Information Available: Low-temperature NMR spectra of eqs 2-4 involving the previously uncharacterized cyclopropanones; coordinates and energies for TS1A, TS1B, TS2A, TS2A', 2, diazoethane, methyl ketene, and cis- and trans-2,3-dimethylcyclopropanone; plot of the oxyallyl-like structures obtained from IRC calculations ( 15 pages). See any current masthead page for ordering and Internet access instructions.
JA972680K
(12) Oxyallyls have been computed as minima using CASSCF methods, see: Lim, D.; Hrovat, D. A.; Borden, W. T.; Jorgensen, W. L. J. Am. Chem. Soc. 1994, 116, 3494 . The calculated transition state for disrotatory ringclosure of oxyallyl to cyclopropanone is very small and the geometry resembles oxyallyl ( $24^{\circ}$ twist of terminal carbons). At the B3LYP/6-31G* level, we do not locate minima for either syn-syn or syn-anti dimethyloxyallyl. Therefore, in our IRC calculations, we would obviously not expect to find an oxyallyl intermediate. As $\mathrm{N}_{2}$ leaves in the IRC sequence, one can describe the other fragment as an "oxyallyl-like" structure (see the Supporting Information); the main difference between this geometry and a planar oxyallyl is a twist of the terminal carbons. However, the syn-anti stereochemical feature of an oxyallyl is present and the disrotatory motion of the above twist is also inherent in the somewhat concerted movement of atoms as $\mathrm{N}_{2}$ leaves. It is possible that other levels of theory will find an oxyallyl minimum in the IRC sequence, but this would not change the essence of the stereochemical features of the present mechanism.
(13) Summary energies: TS1, 23.4; intermediate related to 2, 7.5; TS2, 18.9, all $\Delta \Delta \mathrm{G}_{298} \mathrm{kcal} / \mathrm{mol}$ above a zero reference for diazomethane plus ketene.
(14) Where $\mathrm{C}-\mathrm{N}=2.06 \AA$, the "oxyallyl" $\mathrm{C} 1-\mathrm{C} 3$ distance is still 2.21 $\AA$, but for $\mathrm{C}-\mathrm{N}=2.44 \AA, \mathrm{C} 1-\mathrm{C} 3$ is only $1.94 \AA$. For $\mathrm{C}-\mathrm{N}=2.90 \AA$, $\mathrm{C} 1-\mathrm{C} 3=1.57 \AA$, i.e., cyclopropanone is nearly completely formed.


[^0]:    (1) (a) Lipp, P.; Buchkremer, J.; Seeles, H. Ann. Chem. 1932, 499, 1.
    (b) Semenow, D. A.; Cox, E. F.; Roberts, J. D. J. Am. Chem. Soc. 1956,

    78, 3321. (c) Kende, A. Ph.D. Dissertation, Harvard University, 1956. (d) Turro, N. J.; Hammond, W. B. J. Am. Chem. Soc. 1966, 88, 3672. (e) Schaafsma, S. E.; Steinberg, H.; de Boer, T. J. Recl. Trav. Chim. Pays-Bas 1966, 85, 1170. (f) Rodriguez, H. J.; Chang, J.-C.; Thomas, T. F. J. Am. Chem. Soc. 1976, 98, 2027.
    (2) For a review, see: Turro, N. J. Acc. Chem. Res. 1969, $2,25$.
    (3) Turro, N. J.; Hammond, W. B. Tetrahedron 1968, 24, 6017. See also: Kende, A. Chem. Ind. 1956, 1053.
    (4) Cordes, M. H. J.; Berson, J. A. J. Am. Chem. Soc. 1996, 118, 6241.
    (5) Only cis-2,3-di-tert-butylcyclopropanone has been reported: Sorensen, T. S.; Sun, F. J. Am. Chem. Soc. 1995, 117, 5592; Can. J. Chem. 1997, 75, 1030. However, the other cis- and trans-dialkylcyclopropanones are distinguished by the $\mathrm{H} 2-\mathrm{H} 3$ coupling constant: $17-18 \mathrm{~Hz}$ for cis, 7-9 Hz for trans.

[^1]:    (6) In eq 3, a third product (7\%) is also formed, and in eq 4, one also sees a third product $(9 \%)$. These are tentatively assigned to allene oxide structures.
    (7) Tidwell, T. T. Ketenes; John Wiley and Sons, Inc.: New York, 1995.
    (8) Some ketene reactions have previously been modeled by MO methods, e.g.: see Sordo, J. A.; González, J.; Sordo, T. L. J. Am. Chem. Soc. 1992, 114, 6249.
    (9) Gaussian 94, (Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1995.

